

BSAM Pilot Case II: Experiences on development and implementation

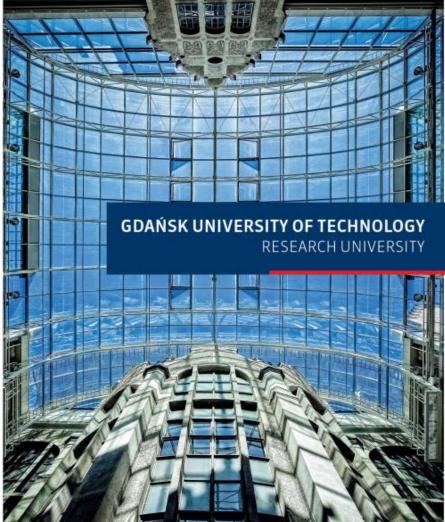
Presented by: Piotr Rybarczyk, PhD., Andrzej Rogala, PhD.

Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology Phone: +48 58 347 12 29

E-mail: piotr.rybarczyk@pg.edu.pl

Outline

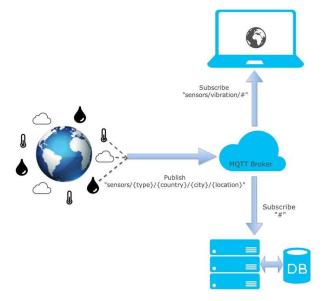
- Gdańsk Tech
- Approach
- Difficulties and solution
- BSAM Gdańsk Tech Pilot Case BOX
- Pilot Case on DH network
- Pilot Case: laboratory testing
- Carbon footprint reduction
- Comments
- Conclusions



Fund

Pilot Case approach

- On-line monitoring of selected parameters on DH grid, giving straight information about stability of working parameters, thus stability of DH grid condition
- Economic, simple, reliable
- Alarm due to leakage, humidity increase or chamber flooding
- Ease of pipe rapture localization
- Carbon footprint reduction


Difficulties

- No solution easily accessible
- Communication problems with potential technology suppliers
- High cost and questionable reliablity of various solutions
- Tender procedure
- Limited resources

Solution

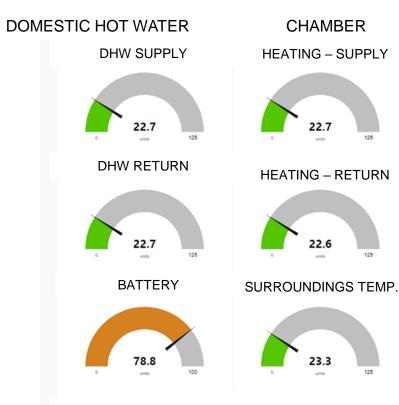
- Utilization of a set of sensors (temperature, humidity, leak detection, water level)
- Installation on real-grid and laboratory test installation
- On-line data acquisition

Assumptions

- Pilot Case contains two parts i.e. 20 devices for data driven proactive maintenance of a district heating pipelines mounted on OPEC DH grid in Wejherowo and a laboratory installation for model investigations of pre-insulated pipelines degradation.
- The main goal of the Pilot Case is to assist digitization of analog data needed in smart asset management of district heating systems, resulting in a decrease of carbon footprint of DH systems. This is going to be achieved by providing a central data storage and analysis system, which can be implemented as in independent server and application in the cloud and on the supplied control unit.

BSAM PCGT BOX

- Baltic Smart Asset Managemet Pilot Case in Gdańsk Tech BOX (sensor station)
- 4 temperature sensors for measuring the temperatures for the supply and return pipes;
- a temperature and humidity sensors for monitoring environmental conditions in the DH chamber;
- 1 sensor for detecting a water leak, based on water-level principle;
- 4 sensors for ultrasonic testing of the pipe condition, allowing for detection of a pipe rapture.

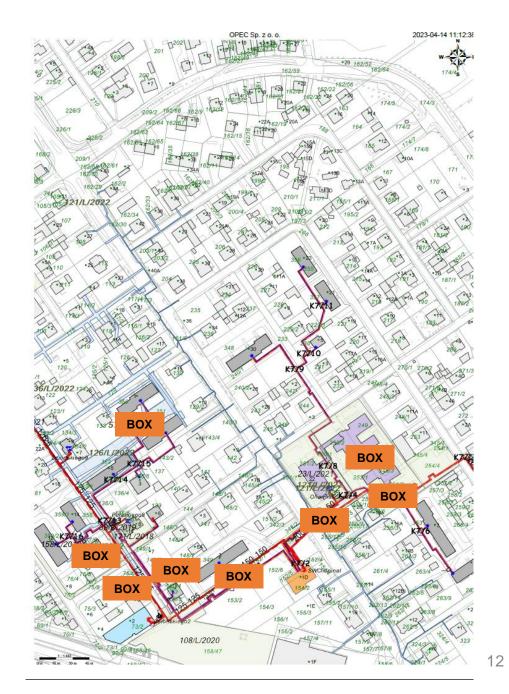


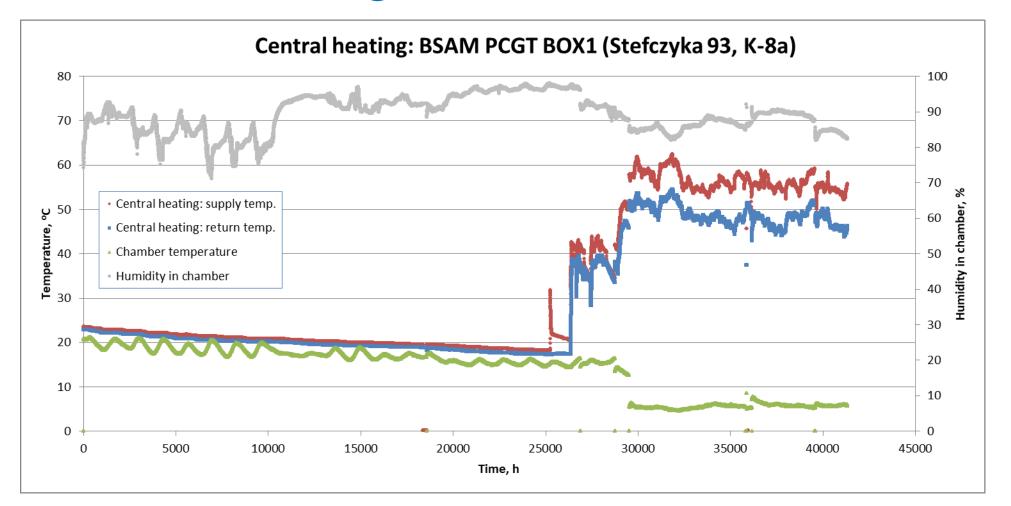
Pilot Case: Laboratory test installation

- A laboratory test installation contains an electrical water boiler coupled with a typical DH preinsulated pipes. It allows for monitoring of temperature distribution for the supply and return pipelines using a sensor stations as a result of heat transfer in the plate heat exchanger:
 - internal diameter of a pipe: 50 mm
 - length of a supply: 12 m
 - length of a return: 12 m
 - plate heat exchanger
 - water meters (max flow rate 160 dm³ min⁻¹)
 - 24 meters of pre-insulated pipes in reserve
 - device for measuring of a pipe thickness
 - control system coupled with a sensor station



BSAM PCGT BOX





Pilot Case: DH grid – selected results

Pilot Case: Carbon footprint reduction

Assumptions:

- BOX devices are powered from electrical grid
- Leak detection flow rate using hydrophones is 100 l/h
- 1 km of district heating network is considered
- Localization of pipe rapture by traditional method takes 36 h
- Localization of rapture using BOX device takes 1 h
- Defra coefficients (2022) were used
- Carbon footprint reduction is assessed
- Period of 1 year is considered with one accident of water leak due to pipe rapture (domestic hot water / heating – hot water)

Pilot Case: Carbon footprint reduction

Method	eCO₂/h – water heating	Time, h	Carbon footprint for water heating	Volume of water lost, dm ³	kg CO2 for water refill	Carbon footprint for water refill, kg eCO ₂)	Power consumption kWh	Carbon footprint for power, kg eCO ₂
Domestic hot water								
Hydrophones	0.8897	36	32.0295	3600	0.000149	0.5364	-	-
BOX	0.8897	1	0.8897	100	0.000149	0.0149	1.296	0.9318
Heating – hot water								
Hydrophones	0.3885	36	13.9878	3600	0.000149	0.5364	-	-
BOX	0.8897	1	0.8897	100	0.000149	0.0149	-	-
Carbon footprint for a failure – hydrophones: 47.09 kg eCO ₂								
Carbon footprint for a failure – BOX devices: 2.24 kg eCO ₂								
CARBON FOOTPRINT REDUCTION USING BOX DEVICES: 44.85 kg eCO ₂								

Pilot Case: Conclusions

- Pilot Case developed in Poland shows a good potential for monitoring of selected parameters of DH system (temperature, humidity, alarm for pipe rapture) which confirm the stability of a system and allows for very fast detection and localization of a pipe rapture
- Eease of installation of BOX devices (fast, non-invasive) and realtime on-line data visualization
- Acoustic signals possible to be obtained (years of experiences to relate the changes in signal to the condition of the pipe needed)
- System is rather simple and proved to work reliably for 9 months by now

