

Challenges to modernize DH networks

dr. Valdas Lukoševičius

District heating in Lithuania

• DH networks have been installed in all cities and towns

Annual DH production	~ 9 TWh
Heat losses in DH	15 %
networks	
Used heat production	~ 3175 MW
capacity	
The length of DH	2872 km
networks	

Annual replacement and expansion of DH networks, km

Number of DH consumers

Replacement of tubes in Kaunas DH system

TYPICAL CONSTRUCTION OF OLD PIPELINES

INSTALLATION OF PREINSULATED TUBES IN AN OLD TRENCH

REPLACEMENT OF TUBES

FACTORS AFFECTING LIFETIME OF TUBES. FORECAST OF REPLACEMENT

- Water accured into thermal insulation of tubes: Net water leakage, damaged or blocked drain lines
- Pure construction of DH tranches, supports, compensators etc.
- Parameters of water maintained in the DH network
- Inner corrosion velocity of steel
- Heat supply regime (temperature, pressure, interruptions)
- Typical life-time of pipelines
- Statistics on ruptures in the pipelines...

When certain tube expected to be replaced?

OF OLD TUBES AT

INDICATIVE COST FOR NEW DISTRICT HEATING PIPELINES

Group of diameter, mm	Cost of 1 km, thous. EUR
D N≤70	250
70 <dn≤150< th=""><th>425</th></dn≤150<>	425
150 <dn≤300< th=""><th>680</th></dn≤300<>	680
300 <dn≤600< th=""><th>1595</th></dn≤600<>	1595
DN>600	2330

Relation between actual continuous operating conditions and accelerated ageing of steel pipelines

Relation between actual continuous operating conditions and accelerated ageing. Where: 1 - Expected thermal life (L), days; 2 - Expected thermal life (L), years; 3 - 50 years; 4 - 30 years; 5 - Actual operation conditions; 6 - 3 600 h; 7 - 1 450 h; 8 - Ageing test conditions; 9 - Continuous operating temperature (Θ)

Corrosion speed calculation simplest - most popular method

INNER TUBES CORROSION INTENSITY

Corrosion rate	Corrosion velocity, mm/year
None	0-0,02
Low	0,02-0,04
Medium	0,04-0,05
High	0,05-0,2
Emergency	>0,2

EVALUATION OF DISTRICT ENERGY DEMAND AND PERSPECTIVES OF DHC SERVICE (10 YEARS?)

- Forecast of heat and cold demand at the certain region (district)
- Forecast of future consumer characteristics, potential connections/disconnections etc.
- City and state tasks in decarboniztion, energy efficiency...
- Demand of electricity generated by CHP plants
- Municipal waste utilization plan
- Waste heat sources available
- Lifetime analysis of the main pipelines and assets
- Prioritization of zones for district energy supply, etc.

PROGRAM FOR DH C NETWORK REHABILITATION (10 YEARS?)

- Evaluation of expected lifetime of the pipelines and the main assets
- Estimation of energy efficiency of the DH network
- DH network structure, parameters, configuration..
- Incorporation of tube replacement and expansion program into the plan of city or town energy complex
- Improvement of water treatment program, diagnostics and operational conditions
- Decision regarding DH system rehabillitation and expansion
- Digitilization of DH networks: better management

Evaluation of technical and financial perspectives of the entire DH rehabilitation program

STATISTICS ON TUBE FAILURES (2010 Y.)

PRESENT MONITORING METHODS

- Hydraulic pressure tests
- Volume of filled make-up water (dynamic)
- Analysis of tubes failure reasons
- Thermography from drones or planes
- Mobile accoustic and ultrasonic devices
- Other

Main task: to improve management of DH networks and to prolong operational time of tubes.

New approach and technologies needed...

EFFECTIVE MANAGEMENT OF DH NETWORKS

- Monitoring of water leakages and ground wter ingress. Wires & Sensors
- Ultrasonic "PIG" technolgy?
- **Thermography**
- Geoinvestigations
- Wall thikness measurement?
- ???

Early prevention of failures Replacement of tubes "just in time"

Thank you!

VALDAS Lukoševičius