Biomass for District Heating and Cooling Brussels 22.06.2009

Content

Combined Combustion of Coal and Biomass

Introduction

Zvolenská teplárenská

Oroszlány Power Plant

Utilization of renewable resources of Energy

Conclusion

Introduction

Biomass

alternative fuel renewable resource wooden chips saw dust calorific value 8.5 - 12 MJ/kg

ZVOLENSKÁ TEPLÁRENSKÁ

SLOVAK REPUBLIK

ZVOLENSKÁ TEPLÁRENSKÁ

Reconstruction in two stages

1st stage : reconstruction of boiler K 1, construction of transport routes for biomass

2nd stage : reconstruction of boiler K 2

Reconstruction targets

to fulfil emission limits valid from 1.1.2008

to co-combust biomass up to 30 % thermal input

to reach guaranteed parameters, output, steam temperature and pressure

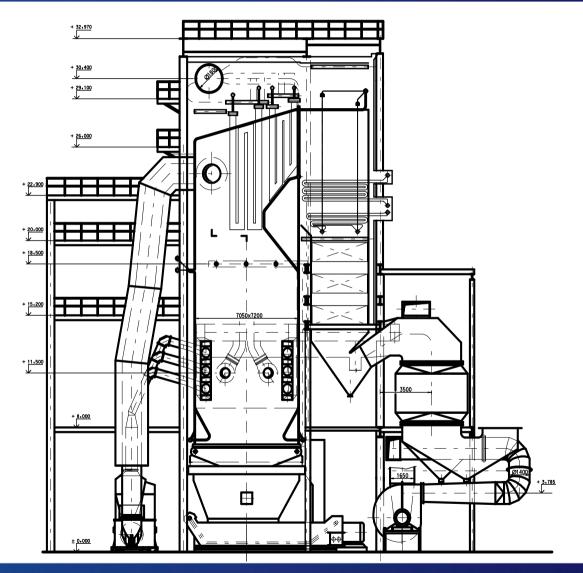
ZVOLENSKÁ TEPLÁRENSKÁ

Fuel

	Brown	Brown coal		Biomass	
W ^r	40,0	%	35-50	%	
Ar	10,2	%	2,0	%	
S ^r	0,45	%	0,0	%	
V ^{daf}	51,0	%	80,0	%	
Calorific value Grain size	14,0 0 - 22	MJ/kg mm	8,5–12 10 – 50	MJ/kg mm	

ZVOLENSKÁ TEPLÁRENSKÁ

Boiler K 1


Main parameters of boiler :

Nominal output	160	t/h
Nominal pressure of steam	13.6	MPa
Nominal temperature of steam	540	°C
Nominal temperature of feed water	225	°C
Boiler efficiency	86	%

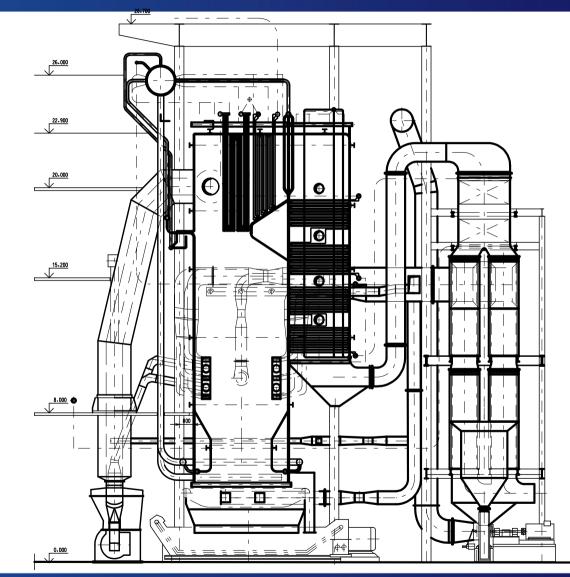
ZVOLENSKÁ TEPLÁRENSKÁ

Boiler K 1

Dry-bottom boiler with extension grate Natural circulation Membrane combustion chamber Ljungstroem 4 fan-type mills 4 tilting-type coal burners 4 stable gas burners DENOx

ZVOLENSKÁ TEPLÁRENSKÁ

Boiler K 2

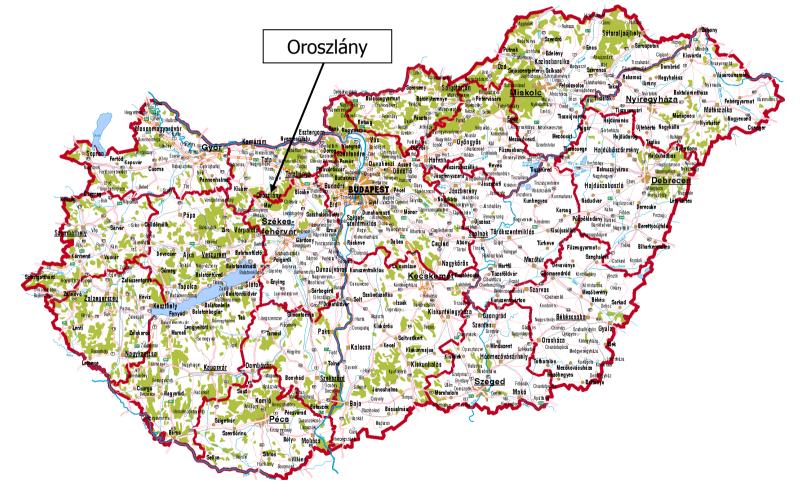

Main parameters of boiler :

Nominal output	90	t/h
Nominal pressure of steam	13.6	MPa
Nominal temperature of steam	540	°C
Nominal temperature of feed water	225	°C
Boiler efficiency	88.6	%

ZVOLENSKÁ TEPLÁRENSKÁ

Boiler K 2

Dry-bottom boiler with extension grate Natural circulation Membrane execution Tubular air heater 4 fan-type mills 4 tilting-type coal burners 2 stable gas burners DENOx


ZVOLENSKÁ TEPLÁRENSKÁ

Guaranteed emissions

NO _x	600	mg/Nm ³
CO	250	mg/Nm ³
SO ₂	1600	mg/Nm ³
Solids	50	mg/Nm ³

OROSZLÁNY Power Plant - HUNGARIA

OROSZLÁNY Power Plant

Reconstruction in two stages

1st stage : reconstruction of boilers K 1-4,

2nd stage : reconstruction of boilers K 1-2 to co-combust coal and biomass

Reconstruction targets

to fulfil emission limits

to co-combust biomass up to 30 % thermal input

o reach guaranteed parameters, output, steam temperature and pressure

OROSZLÁNY Power Plant

Fuel

	Brown	Brown coal Biomass (
Wr	14,8	%	31-43 %
Ar	38,0	%	4,0 %
S ^r	3,6	%	0,1 %
Vdaf	33,0	%	80,0 %
Calorific value	12,2	MJ/kg	9,6–11,8MJ/kg

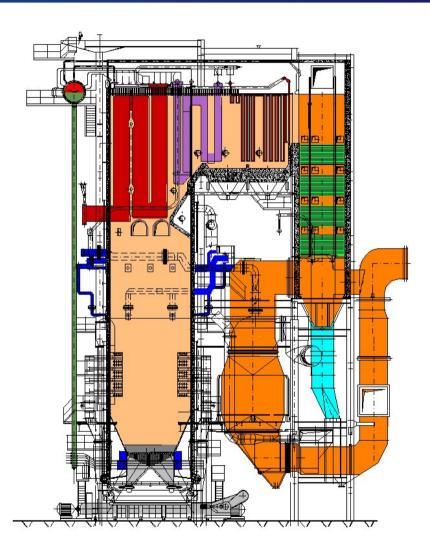
Remark: Combusted biomass will consists of energy reed, agricultural wastes, straw, separated waste

OROSZLÁNY Power Plant

Boiler K 1, 2

Main parameters of boiler :

Nominal output	230	t/h
Nominal pressure of steam	9.91	MPa
Nominal temperature of steam	540	°C
Nominal temperature of feed water	210	°C
Boiler efficiency	88	%


Guaranteed emissions

mg/N	400	NOx
mg/N	250	CO

OROSZLÁNY Power Plant

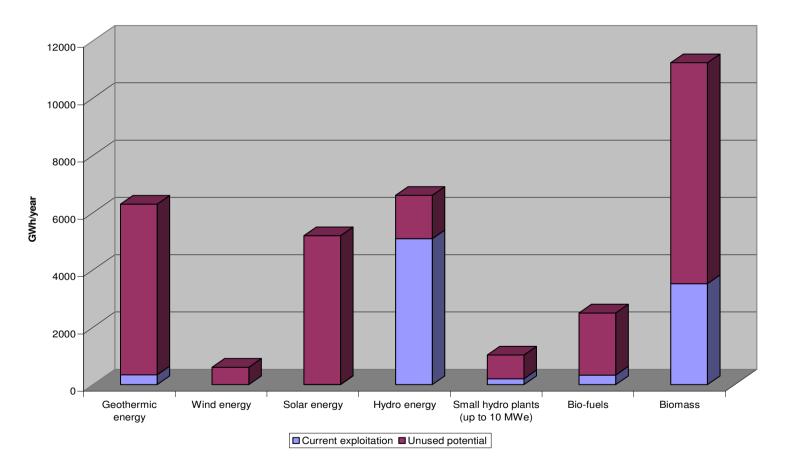
Boiler K 1

Dry bottom boiler Natural circulation Membrane wall execution Ljungstroem 4 fan-type mills 4 coal burners 4 stable gas burners DENOx Fluidized bed grate for biomass combustion

What grants co-combustion of biomass

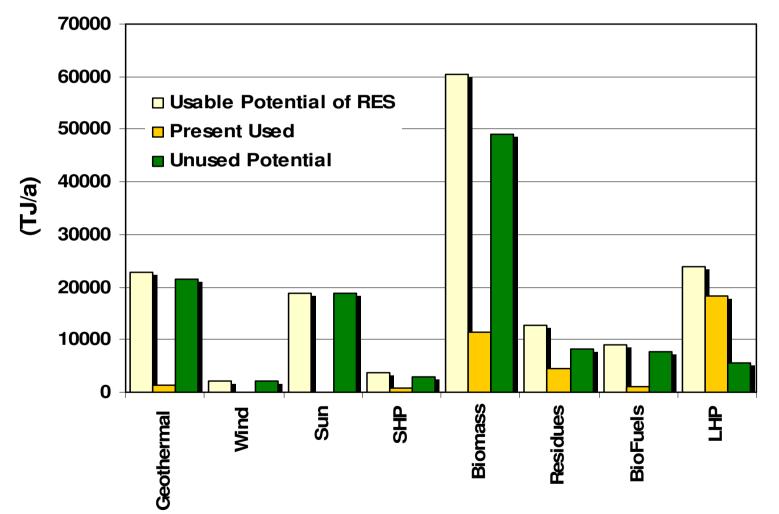
To fulfil legal emissions of SOx without desulphurization a

To improve economy of operation

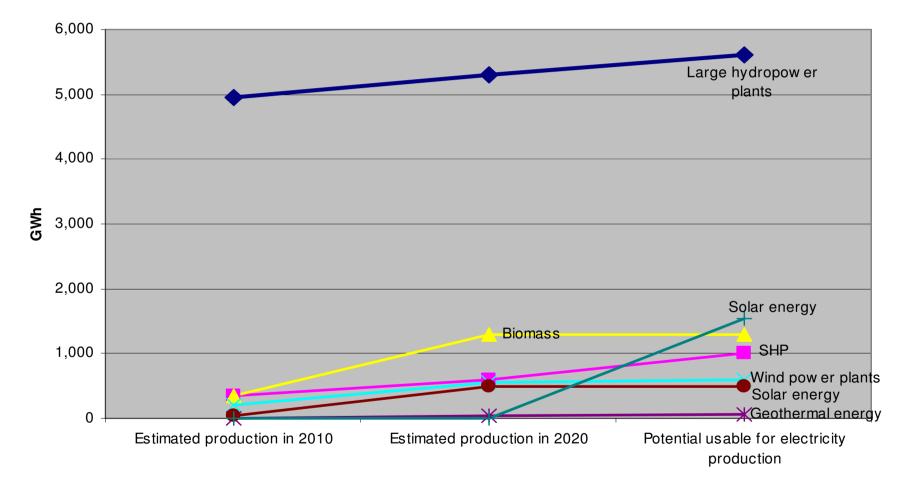

To increase the share of renewable resources in power generation

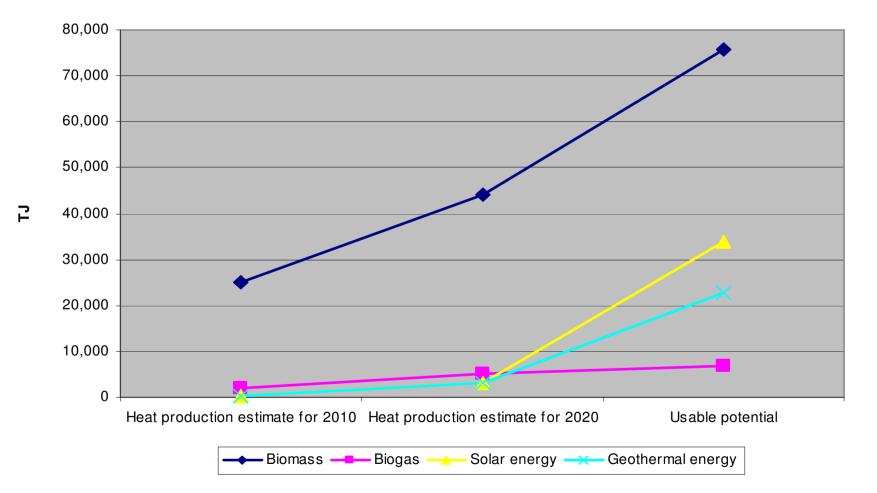
To reduce production of green house gases

State of Art in exploitation of biomass LC-DH

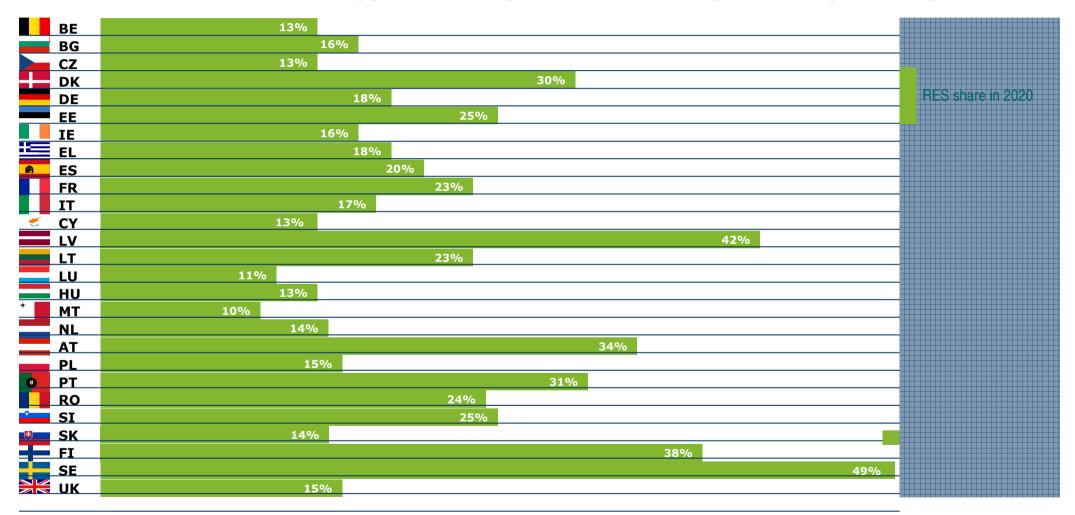


RES potenial in Slovakia




Situation In Slovakia: R-E Resources & Carriers

RES-E Utilisation Outlook


RES-Heat Utilisation Outlook

EU efforts to increase ONE share in the field of power engineering : Renewable carriers of energy and their share in power engineering in 2005

	BE	2.2%	
	BG	9.4%	
	CZ (*)	5%	
	DK (*)	15.4%	
	DE	5.8%	1=Sistare in 2005
	EE(*)	17.1%	
	IE	3.1%	
:=	EL	6.9%	
A	ES	8.7%	
	FR	10.3%	
	IT	5.2%	
5	CY	2.9%	
	LV	34.9%	
	LT	15%	
	LU	0 9%	
	ΗU	4.3%	
٠	МТ	0%	
	NL	2.4%	
	AT	23.3%	
	PL	7.2%	
•	PT	20.5%	
	RO (*)		
0	SI	16%	
	SK	6.7%	(*) Figure adjusted by
	FI	28.5%	early starter bonus
	SE (*)	38.9%	
	UK	1.3%	

EU intention to increase ONE share in the field of power engineering : Renewable carriers of energy and their planned share in power engineering in 2020

Conclusion

For long-term ensuring the demands for energy, it is inevitable to provide sufficient variety of energy resources consisting mainly of fossil fuels as well as renewable resources.

Importance of renewable energy resources is justified primarily by necessity to reduce production and emissions of gaseous pollutants and greenhouse gases.

Technologies using renewable energy resources are generally cleaner, less hazardous and especially based on unlimited fuel resource – sun.

There are also other economical advantages of renewable resources utilization, e.g. no influence of exchange rates changes and it is of great importance for the countries depending on fuel import.

It is concerning energy as well as environment, sustainable development of society, safety, recovery of local production, creation of new jobs and complete branches of industry.

Thank you for your attention