completing the energy sustainability puzzle

ENERGY and WATER Emerging International Issues and Challenges

Yellow at the filler

World Energy Council - Montreal September 2010

Mike Hightower Sandia National Laboratories - Albuquerque, New Mexico USA

Energy-Water Connections

- Energy sector accounts for 8% of worldwide fresh water withdrawals
 - 40% of withdrawals in developed countries
 - 27% of non-agricultural fresh water consumption in the US could quadruple by 2030 from electricity and biofuels demand
- Energy sector contributes to water quality issues
 - Traditional oil and gas produced water; biofuels, oil sands, oil shale, gas shale, and coal bed methane waste water; water drainage from coal and uranium mines; thermoelectric power plant emissions and impact on surface water quality
- Water and waste water sector energy use is expected to grow substantially
 - Growth in water treatment, new disinfection technologies, increased water transportation needs, etc. will increase energy intensity
 - Water and waste water sector energy use could grow from 3% to 10% of total demand by 2030
 - 30% of India's energy use is for ground water pumping

FY and WATER

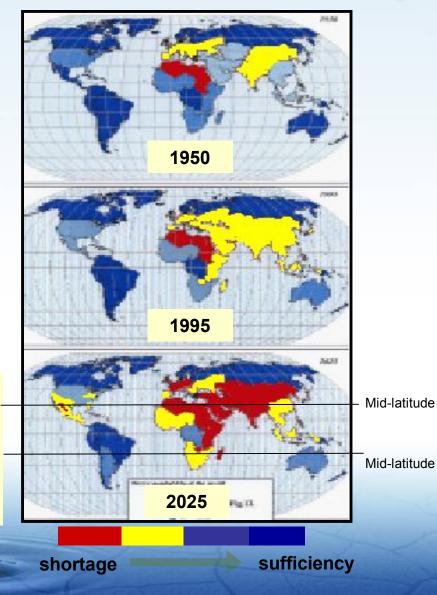
Past and Projected Global Increase in Energy Consumption

Source: BP Statistical Review of World Energy 2006

IEA projects 5,000 Mtoe increase between 2007 and 2030, Continuing the trend of the past 30 years

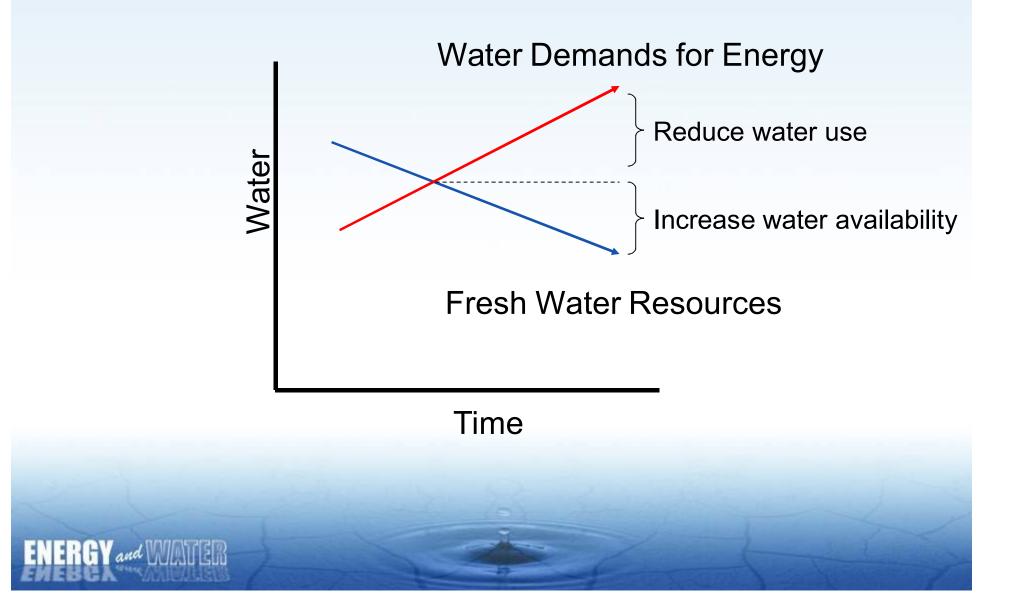
ENERGY and WATER

Over half the world's population will face severe water shortage in the next 50 years


• By 2025,

and

- 20% more fresh water will be needed for irrigation worldwide, and
- 40% more fresh water for domestic supplies to meet current per capita consumption
- Exacerbated by climate change


"Water promises to be to the 21st century what oil was to the 20th century: the precious commodity that determines the wealth of nations."

Fortune Magazine, May 15, 2000

Trends in Fresh Water Availability and Energy Demands for Water

Water Availability Is Already Impacting New U.S. Energy Development

2003 Heat Wave Impact on French Electric Power Generation

- Loss of 7 to 15% of nuclear generation capacity for 5 weeks
- Loss of 20% of hydro generation capacity
- Large-scale load shedding and shut off transmission to Italy
- Sharp increase of spotmarket prices: 1000 to 1500 \$ / MWh for most critical days

Normal conditions in August

Bort-les-Orgues Réservoir

August 27, 2003

ENERGY and WATER

Summary of Major U.S. Needs and Issues Identified in Regional Workshops

Improved water and energy use efficiency

- Improved water efficiency in thermoelectric power generation
- Improved biofuels/biomass water use efficiency
- Reduced water intensity for emerging energy resources
- **Development of alternative water resources and supplies**
- Non-traditional and oil and gas produced water use and reuse
- Improved energy efficiency for non-traditional water treatment and use

Better resources planning and management

- Improved water supply and demand characterization, monitoring, and modeling
- Integrated regional energy and water resource planning and decision support tools
- Framework for incorporating infrastructure, regulatory, and policy considerations for improved energy/water efficiency planning

Water Use and Consumption for Electric Power Generation Alternatives

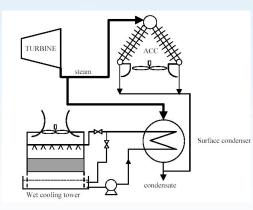
	Cooling Process	Water Use Intensity (l/MWh _e)		
Plant-type		Steam Condensing		Other Uses
		Withdrawal	Consumption	Consumption
Fossil/ biomass steam turbine	Open-loop	80,000–200,000	~800-1200	~120
	Closed-loop	1200–2400	1200–2000	
Nuclear steam turbine	Open-loop	100,000–240,000	~1600	~120
	Closed-loop	2000–4400	1600–2900	
Natural Gas Combined- Cycle	Open-loop	30,000-80,000	400	400
	Closed-loop	900	700	
Integrated Gasification Combined-Cycle	Closed-loop	800	700	600
Carbon sequestration for fossil energy generation	~65% increase in water withdrawal and consumption			
Geothermal Steam	Closed-loop	8000	2000-5500	200
Concentrating Solar	Closed-loop	3000	2900	40
Wind and Solar Photovoltaic	N/A	0	0	10

Water Consumption for Different Transportation Fuel Alternatives

Relationship to Water Quantity	Relationship to Water Quality	Water Consumption	
		Water consumed per-unit-energy [gal / MMBTU] †	Average gal water consumed per gal fuel
Water needed to extract and refine; Water produced from extraction	Produced water generated from extraction; Wastewater generated	7 – 20	~ 1.5 ~ 1.5
Water needed for growing feedstock and for fuel processing;	Wastewater generated from processing; Agricultural irrigation runoff and infiltration contaminated with fertilizer, herbicide, and pesticide compounds	12 - 160	~ 4
		2500 - 31600	~ 980*
		4 – 5	~ 1
		13800 - 60000	~ 6500*
Water for processing; Energy crop impacts on hydrologic flows	Wastewater generated; Water quality benefits of perennial energy crops	24 – 150 ^{‡§} (ethanol) 14 – 90 ^{‡§} (diesel)	~ 2 - 6 [‡] § ~ 2 - 6 [‡] §
Water needed to	Wastewater generated; In-situ impact uncertain; Surface leachate runoff	1 – 9 ‡	~ 2 ‡
Extract / Refine		15 - 40 ‡	~ 3‡
Water needed to Extract / Refine	Wastewater generated; Leachate runoff	20 - 50	~ 4 - 6
Water needed for synthesis and/or steam reforming of natural cas (NG)	Wastewater generated from coal mining and CTL processing	35 - 70	~ 4.5- 9.0
		20 – 24 ‡	~ 3 ‡
naturai gas (NG)		40 – 50 ‡	~7‡
	to Water Quantity Water needed to extract and refine; Water produced from extraction Water needed for growing feedstock and for fuel processing; Energy crop impacts on hydrologic flows Water needed to Extract / Refine Water needed to Extract / Refine	to Water Quantityto Water QualityWater needed to extract and refine; Water produced from extractionProduced water generated from extraction; Wastewater generated from processing;Water needed for growing feedstock and for fuel processing;Wastewater generated from processing; Agricultural irrigation runoff and infiltration contaminated with fertilizer, herbicide, and pesticide compoundsWater for processing; Energy crop impacts on hydrologic flowsWastewater generated; full processing; Energy crop impacts on hydrologic flowsWater needed to Extract / RefineWastewater generated; In-situ impact uncertain; Surface leachate runoffWater needed to Extract / RefineWastewater generated; In-situ impact uncertain; Surface leachate runoffWater needed for synthesis and/or steam reforming ofWastewater generated; In-situ processing	to Water Quantityto Water QualityWater consumed per-unit-energy [gal / MMBTU] †Water needed to extract and refine; Water produced from extractionProduced water generated from extraction; Wastewater generated from processing;7 - 20Water needed for growing feedstock and for fuel processing;Wastewater generated from processing; Agricultural irrigation runoff and infiltration contaminated with fertilizer, herbicide, and pesticide compounds12 - 160Water for processing; Energy crop impacts on hydrologic flowsWastewater generated; Wastewater generated; In-situ impact uncertain; Surface leachate runoff24 - 150 1% (ethanol) 14 - 90 1% (diesel)Water needed to Extract / RefineWastewater generated; In-situ impact uncertain; Surface leachate runoff1 - 9 ‡ 15 - 40 ‡Water needed for synthesis and/or steam reforming of natural gas (NG)Wastewater generated; from coal mining and CTL processing35 - 70

[†] Ranges of water use per unit energy largely based on data taken from the Energy-Water Report to Congress (DOE, 2007)
 ^{*} Conservative estimates of water use intensity for irrigated feedstock production based on per-acre crop water demand and fuel yield
 [‡] Estimates based on unvalidated projections for commercial processing;
 [§] Assuming rain-fed biomass feedstock production

Shale gas development could be limited by water availability and quality issues



- Water is used in drilling, completion, and fracturing
- Up to 3 million gallons of water is needed per well
- Water recovery can be 20% to 70%
- Recovered water quality varies – from 10,000 ppm TDS to 100,000 ppm TDS
- Recovered water disposal or treatment can be problematic in some areas

Extensive North American Reserves

Research Program for Electric Power Sector

Hybrid Wet-Dry Cooling

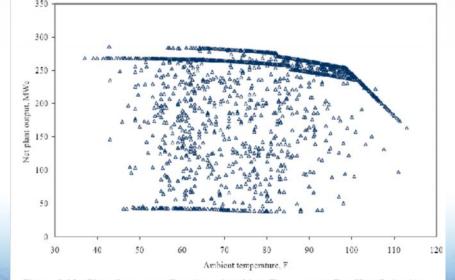
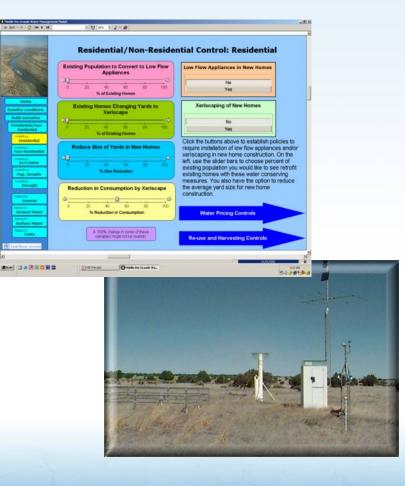


Figure 5 Net Plant Output as a Function of Ambient Temperature; Dry Heat Rejection

- Improve dry and hybrid cooling system performance and cost
- Improve ecological performance of intake structures for hydro, oncethrough, and ocean cooling
- Improve materials and cooling approaches compatible with use of degraded water
- Electric grid infrastructure upgrades to improve low water use distributed technology integration

Research Program for Alternative Fuels Sector



and

- Reduce water use for cooling in biofuels and alternative fuels production
- Reduce water use in processing
- Develop low fresh water use technologies such as algal biodiesel
- Assess non-traditional water
 use for fuels applications
- Assess hydrologic impacts of large cellulose biofuels scaleup, oil shale, oil sands, etc.

Research and Development Program for Integrated Resources Management

- Accelerate water resources forecasting and management
- Evaluate impacts of climate variability and improve hydrological forecasting
- Improve common decision support tools
- Develop system analysis approaches for: Co-location of energy and water facilities, improved national transmission capabilities to support renewables, distributed generation of biofuels

ENERGY and WATER

Summary of Global Energy and Water Issues and Challenges

- Across the globe, energy demand is rising while fresh water resources are becoming more limited
- This is causing increased stress on natural resources water, land, and energy
- Economically and environmentally sustainable development will require innovation in how energy, water, and land resources are developed, used, and managed in the future

