

Aalto University School of Engineering

Rakennuksen älykäs energiajärjestelmä: IoT:n ja kysyntäjouston hyödyntäminen lämmityksen ohjauksessa

Global District Energy Days 27.9.2018

Risto Kosonen

HVAC-Group Department of Mechanical Engineering

Research objectives

• To find out:

- The effect of centralized demand response on indoor air temperatures, perceived thermal comfort and the operation of heating system in existing building
- Cost saving potential of demand response of district heating and ventilation in an educational building by dynamic price tariff
- The operation of decentralized and centralized demand response control

Motivation of demand response

• Types of demand response:

- Demand response on the building level aids stabilization of the consumption profile in the district heating and electricity grid.
- A stable consumption reduces peak demand and need for high cost peak power plants:
 - \rightarrow Less CO₂ emissions
 - → Financial savings for energy producer and consumer

Example of price based demand response control

- Dynamic energy price and resultant operation:

Demand response control of space heating

A. Centralized control

→ Adjustment of radiator inlet water temperature

Manual thermostatic radiator valves (TRV):

B. Decentralized control

→ Room air temperature set-point adjustment (20-24.5°C)

Does the slowness of the heat distribution system set a barrier for the utilization of centralized demand response?

Centralized demand response field study: U-wing of Otakaari 1

- Heated net floor area of the U-wing: 13 800 m²

Standard and actual temperature of heating inlet water during the test periods with different demand response control algorithms

Inlet water temperature and heating power of space heating during one example period (P12)

Measured indoor air temperatures

Feedback on the indoor temperature conditions by Granlund Pulse system

Share your opinion about the indoor temperature!

We are collecting feedback on indoor temperature of Otakaari 1 U-wing at Aalto University's research project. With your feedback, we are developing intelligent heating control. The aim of the developed solutions is to reduce the CO₂ emissions of energy production and to optimize the energy use of the building.

More information about REINO-project: Juha Jokisalo, D.Sc. (Tech.) Aalto University Department of Mechanical Engineering P. +358 50 407 2287 juha.jokisalo@aalto.fi The responsible leader of the project: Professor Sanna Syri Aalto University Department of Mechanical Engineering

Feedback on the indoor temperature conditions

Period	P1 (no DR)	P2	Р3	P4	Р5	P6 (no DR)	P7	P8	Р9	P10	P11	P12	P13
Negative 😕	8	11	1	1	3	2	55	35	54	61	46	13	5
Positive 😊	9	3	1	0	1	0	66	39	107	127	51	36	12
Negative 🛞 (%)	47	79	50	100	75	100	45	47	34	32	47	27	29
Positive 😊 (%)	53	21	50	0	25	0	55	53	66	68	53	73	71

→ Share of the positive feedback was highest during the periods (P12 and P13) with the highest inlet water temperature variations (+10/-20 $^{\circ}$ C)

Simulated cost saving potential of demand response

- Centralized control of space heating:

 \rightarrow 1.6% annual heat cost saving

- Centralized control of space heating+ supply air temperature control:

 \rightarrow 1.6% annual heat cost saving

- Decentralized control of space heating:

- Supply air temperature control:

Conclusions

- The slowness of the heat distribution network does not cause any obstacles to demand response control.
- The field study indicates that even centralized demand response control can be implemented without affecting major alterations in the indoor thermal conditions and without increasing occupant discomfort.
- Simulations indicate heat energy cost saving potential of 1-2 % with centralized system and 6 % with decentralized systems.
- Decentralized demand response control is more promising approach.

