

EMPOWERING customers to save energy by informative billing

Mariapia Martino
Politecnico di Torino

I. General information

- Intelligent Energy Europe
 - Improve energy sustainability
 - EU 2020 targets
- Budget
 - 1.958.195,00€
 - 75% funding
- Timing
 - April 2013 September 2015

Make the energy market **more transparent** and enable consumers to **save energy** by empowering them: by involving and informing, helping take measures to save energy on the basis of the information they read on their meters or on their bills.

Objectives

- achieving measureable energy savings
- increasing awareness and motivation of consumers with respect to energy efficiency
- increasing trust between consumers and energy suppliers

Billing information

- comparison with similar households
- clear messages about performance

Online tools

- advanced energy browser (high resolution data)
- load curve profile and daily data communication

Energy alerts service

- exploit smart meter capabilities for personalized and timely information
- Integration with customer service
 - provide a better customer profile
- Insight engine
 - provide the precise information required to inspire and motivate the customer at the right moment and with the right frequency

Partnership

- Spain
 - International Center for Numerical Methods in Engineering (project coordinator)
 - Grup El-Gas
 - GISCE-TI SL
- France
 - Hespul Association
 - Gas Electricity of Grenoble
 - Local Energy and Climate Agency of Grenoble Area

- Italy
 - Politecnico di Torino
 - Iren Energia Spa
 - SINERGIE Consortium Limited Company
 - Municipality of Reggio Emilia
- Denmark
 - Energimidt Infrastruktur A/S
- Belgium
 - Ghent University, Power-Link
- Austria
 - Linz AG

Target groups

- consumers (domestic sector)
- customer organisations
- local authorities
- energy agencies

Key actors

- utility companies
- metering companies
- energy service suppliers

Test group

- 344.000 consumers

Status of the project

- Analysis of the different national Regulations on energy efficiency
- Launch of on line survey
- Definition of three groups of final users: control, experimental and testing

Next steps

- Collection of the data from the survey
- Developing of the on-line tools based on the survey results
- Testing of the on-line tools with the support of the test group

District heating in Torino

- Iren is the first Italian operator in district heating considering the installed volume
- Torino is the Italian city with the highest number of district heating users: 5500 buildings
- Every year the district heating produces environmental advantages:
 - 1300 t nitrogen hoxides emissions saved
 - 2300 t sulphur hoxides emissions saved

and economical advantages:

300000 Tep primary energy saved (equal to 10200 tankers)

District heating in Torino

District heating in Torino

Torino Nord CHP:

400 MW Power Plant

Politecnico HOB Plant

Moncalieri Nord CHP:

800 MW Power Plant

Torino DH Development

HEATED VOLUME

EXISTING GRID: 40 Mm³

TORINO NORD project: 15 Mm³

TOTAL: 55 Mm³

Torino DH Development

Main Features

	HEATED	INHABITANTS	THERMAL PEAK	HEAT	PIPING	BUILDINGS or
	VOLUME					UNITS
	Mm ³	num	MW	GWh/y	km	num
TORINO SUD-CENTRO	39	390.000	960	1.705	345	3.050
NICHELINO	1	10.000	50	80	20	400
TORINO NORD	15	150.000	375	620	150	1.550
TOTAL	55	550.000	1.385	2.405	515	5.000

Efficiency

TRADITIONAL STEAM CYCLE

 $\eta = 38 - 40 \%$

(with REHEATER and FEEDER WATER STEAM PREHETER)

Gas Turbine UNIT (OPEN CYCLE)

 $\eta = 33 - 39 \%$

Gas Turbine Combined Cycle (with 3 levels of pressure and REHEATER)

...CHP GTCC (with 3 levels of pressure and

$$\eta = 56 - 58 \%$$

Global Eff. = 85 - 90 %

REHEATER)

better use of primary sources

less pollution and greenhouse gas emission

Energy saving/

Building structure:

Shape

Materials

Ventilation

Place (exposure,

local climate condition)

Plants:

Fuel

Plant type

Plant size

Control

Operation

Energy efficiency

Users:

Comfort needs

Time spent at home

Scolastic level

Job occupancy

- Empowering on final user of DH (private customer)
 - By changing the routine related to the time of switch on and switch off
 - By accepting a lower level on indoor temperature
 - By setting in an appropriate way the indoor thermal comfort (correct set of the single valves installed on the radiators)
 - By a proper information on the energy savings (money where possible and reduction of GHG)

Torino Heat Demand

Torino Heat Demand

Torino DH Heat Producers

	CHP	ОНВ	STORAGE
MONCALIERI	520 MWt	140 MWt	-
BIT	-	255 MWt	-
POLITECNICO	-	255 MWt	2.500 m ³
MIRAFIORI NORD	-	35 MWt	-
TORINO NORD	240 MWt	340 MWt	5.000 m ³
MARTINETTO (from oct-13)	-	-	5.000 m ³
TOTAL	760 MWt	1.025 MWt	12.500 m ³

Project partners

