



36<sup>th</sup> Euroheat & Power Congress 27-28 May 2013, Vienna, Austria

Forecasting district heating consumption based on customer measurements

Kaisa Kontu Aalto University









## In Helsinki 90 / 90 / 90 philosophy in district heating (DH)

Picture from: wiki.aalto.fi



# Target of the paper

- To develop a forecasting model for DH consumption
- Hourly heat consumption data from individual customers is used as a source
- More accurate consumption data is now available
  - Remote meter readings



# Benefits for

## **DH producer**

- Better production planning and optimization
  - Optimizing the use of heat storages
- Customer profiles for different customer types
- Customer and area specific forecasts

## **DH customer**

Allow planning their
own heat
consumption and
possible local
production (smart DH
systems)



# Data used

- Initially data from 14 customers (block buildings)
  - Nine customers were included
- Hourly heat consumption data
- The full year 2011
- T<sub>out</sub> from Helsinki



# Methods

Linear regression is used  $y_t = a_0 + a_1 x_t$ 

## Social component is included

$$y_t = a_0 + a_{h(t)} + a_1 x_t$$



## Factors taken into account

- Outdoor temperature
- Social component
  - Four different ways

=> Five different models were developed T, T168, T72, T168H, T72H



## Model T - outdoor temperature

# Outdoor temperature data is used in the linear regression model



**Figure:** Regression lines for customer 1 (left, good accuracy) and customer 6 (right, bad accuracy)



# DH consumption and T<sub>out</sub>





# DH consumption and model T





## DH consumption and models T and T72





# Conclusions and future work

- Accuracy of the forecasting models varies depending on the customer
  - More accurate for bigger customers and aggregated groups of customers
- In the best cases a rather simple model was shown to predict the heat consumption with good accuracy



## 

# Thank you!





# Appendix 1. Different models used

Five different models

| Т     | Only outdoor temperature (T <sub>out</sub> ) was considered                                        |
|-------|----------------------------------------------------------------------------------------------------|
| T168  | T <sub>out</sub> together with a 168 hour weekly rhythm was used                                   |
| T72   | T <sub>out</sub> together with a 72 hour weekly rhythm (working days, Saturdays, Sundays) was used |
| T168H | Same as the T168 model, but midweek holidays were classified as Saturdays or Sundays               |
| T72H  | Same as the T72 model, but midweek holidays were classified as Saturdays or Sundays                |



# Appendix 2. Results

|                | Errors of different forecasting models (A – E) |       |       |        |       |                      |        |        |        |        |  |  |
|----------------|------------------------------------------------|-------|-------|--------|-------|----------------------|--------|--------|--------|--------|--|--|
|                | Relative error (%)                             |       |       |        |       | Absolute error (MWh) |        |        |        |        |  |  |
|                | т                                              | T168  | Т72   | т168н  | т72н  | т                    | T168   | т72    | т168н  | т72н   |  |  |
| Customer       |                                                | 1100  | 172   | 110011 | 17211 |                      | 1100   | 172    | 110011 | 17211  |  |  |
| 1              | 9.50                                           | 7.69  | 7.15  | 7.76   | 7.17  | 0.0097               | 0.0076 | 0.0073 | 0.0078 | 0.0074 |  |  |
| 2              | 10.62                                          | 7.53  | 7.66  | 7.50   | 7.63  | 0.0078               | 0.0060 | 0.0061 | 0.0061 | 0.0061 |  |  |
| 5              | 20.81                                          | 14.90 | 15.42 | 14.99  | 15.47 | 0.0081               | 0.0056 | 0.0057 | 0.0056 | 0.0057 |  |  |
| 6              | 26.74                                          | 24.46 | 24.32 | 24.19  | 24.06 | 0.0164               | 0.0135 | 0.0135 | 0.0134 | 0.0134 |  |  |
| 7              | 14.42                                          | 8.09  | 7.51  | 8.13   | 7.53  | 0.0196               | 0.0109 | 0.0102 | 0.0109 | 0.0102 |  |  |
| 8              | 10.40                                          | 6.77  | 6.25  | 6.74   | 6.26  | 0.0107               | 0.0074 | 0.0071 | 0.0074 | 0.0072 |  |  |
| 11             | 11.61                                          | 7.88  | 7.58  | 7.89   | 7.59  | 0.0160               | 0.0104 | 0.0102 | 0.0104 | 0.0102 |  |  |
| 12             | 12.87                                          | 8.45  | 8.32  | 8.39   | 8.24  | 0.0154               | 0.0105 | 0.0105 | 0.0105 | 0.0104 |  |  |
| 13             | 21.65                                          | 15.52 | 15.82 | 15.51  | 15.81 | 0.0141               | 0.0111 | 0.0112 | 0.0110 | 0.0112 |  |  |
| Customer pairs |                                                |       |       |        |       |                      |        |        |        |        |  |  |
| 1 + 2          | 9.13                                           | 6.69  | 6.43  | 6.71   | 6.41  | 0.0162               | 0.0122 | 0.0119 | 0.0123 | 0.0120 |  |  |
| 5 + 6          | 19.83                                          | 16.04 | 16.12 | 15.86  | 15.94 | 0.0204               | 0.0148 | 0.0148 | 0.0147 | 0.0146 |  |  |
| 7 + 8          | 12.05                                          | 6.51  | 5.80  | 6.52   | 5.81  | 0.0297               | 0.0153 | 0.0143 | 0.0154 | 0.0144 |  |  |
| 11 + 12        | 11.29                                          | 6.41  | 6.41  | 6.37   | 6.36  | 0.0291               | 0.0166 | 0.0167 | 0.0165 | 0.0165 |  |  |
| All customers  | 10.67                                          | 5.34  | 5.28  | 5.33   | 5.25  | 0.0872               | 0.0421 | 0.0424 | 0.0420 | 0.0423 |  |  |