

38th Euroheat & Power Congress 14-16 May 2017, Glasgow, United Kingdom Special DHC+ Student Awards 2017 session

Modeling of Combined Heat and Power plants for optimal planning of their production Michał LEŚKO

The research described in the presentation has been conducted in cooperation with Veolia Warszawa, as part of PhD program.

Plan of presentation

Introduction

- Optimization of CHP plant production with energy storage
- Modeling of the CHP plants
- Case study

Summary

Introduction

Traditional approach to District Heating

Electricity price

Heat price

Fuel price

Time

Michał Leśko

Introduction

Current situation of district heating

Michał Leśko

Introduction

Conclusion:

District heating systems, especially the ones supplied from CHP plants, need to adapt to changes in the market and legislation, and especially to improve their **flexibility**

Thermal energy storage in District Heating

Thermal inertia of buildings

Hot water reservoirs

Thermal inertia of the network (pipes)

Michał Leśko

Optimization of production at a CHP plant with energy storage

CONGRESS EUROHEAT Glasgow 2017 & POWER

Modeling of Combined Heat and Power plants for optimal planning of their production

Cooling of DH water

Michał Leśko

Michał Leśko

Michał Leśko

Topology approach: Boilers

Michał Leśko

Advantages & Disdvantages

	Topology approach	Equation approach
+	Comprehensive method of creating the model	Full control over the equations
	Low risk of errors, easy to find errors	No unnecessary equations included
	High replicability, clear and understandable model structure	Possibility to model every kind of complicated constraint
	Actual set of equations is not visible	Model has to be created manually
	Unnecessary equations exist in the model	High risk of errors
	Not all rules and constraints can be modeled	Low replicability, hard to understand the model

Mixed Approach: Topology Approach + special equations when necessary

Michał Leśko

Historical measurements from 1 year, hour by hour

Modeling with 3 methods and comparing results

Michał Leśko

Equation approach

$$P, Q_f = a_1 \dot{Q}_{DHwater} + a_2 \dot{Q}_{steam\,extractions} + a_4 T_{supply} + a_5 T_{return} + a_6 T_{boiler\,feedwater} + b_{boiler\,feedwater} + b_{boiler\,fee$$

Mean Absolute Percentage Error:

3.79% (Electric power); 4.04% (Energy in fuel)

Michał Leśko

Topology approach (1 efficiency interval)

$$P_{electric} = a\dot{Q}_{steam\ in} + b; \ \dot{Q}_{steam} = a\dot{E}_{fuel} + b;$$

Mean Absolute Percentage Error:

4.99% (Electric power); 4.67% (Energy in fuel)

Michał Leśko

Topology approach (2 efficiency intervals)

$$P_{electric} = a\dot{Q}_{steam\,in} + b; \ \dot{Q}_{steam} = a\dot{E}_{fuel} + b;$$

Mean Absolute Percentage Error:

4.94% (Electric power); 4.30% (Energy in fuel)

Michał Leśko

- Optimization of CHP plant production with energy storage requires simple, preferably linear models of production units
- Two main approaches have been shown
- Equation approach allows for higher accuracy
- Topology approach is more replicable, clear and understandable
- A mixed approach (topology approach with additional equations) can be also used

References

- 1. Leśko, Michał. Smart District Heating Concept. Warszawa : Master thesis, 2014.
- 2. Słupiński, Mateusz. Metoda analizy złożonego systemu na przykładzie strategii produkcji energii w elektrociepłowni. PhD thesis.
- 3. Sergio Rech, Andrea Toffolo and Andrea Lazzaretto. TSO-STO: A two-step approach to the optimal operation of heat storage systems with variable temperature tanks. *Energy 45 (2012).*
- 4. Bujalski, Wojciech. Optymalizacja pracy elektrociepłowni wyposażonej w zasobnik ciepła ("Optimization of the operation of a CHP plant equipped with a heat accumulator"). Warszawa : Oficyna Wydawnicza Politechniki Warszawskiej, 2013.

Awards Ceremony

Supported by

International Energy Agency

Implementing Agreement of District Heating and Cooling, including the integration of CHP

Organised by

c/o

